James Webb Space Telescope catches monster black hole napping after ‘overeating’ in the early universe

Napping after overfeeding on food is a dilemma many of us will be fortunate to face on Christmas Day. New research has shown that, billions of years ago, some early black holes also had to nap after overindulging.

Using the James Webb Space Telescope (JWST), astronomers spotted a dormant supermassive black hole that existed just 800 million years after the Big Bang. This cosmic monster passed out after a particularly large meal of galactic gas and dust.

The black hole is extraordinary for its monstrous size. With a mass around 400 million times that of the sun, it is the most massive black hole seen by the JWST in the early universe. The discovery, published on Wednesday (Dec. 18) in the journal Nature, further complicates the mystery of how supermassive black holes got so massive so quickly in the early universe.

The mass of this supermassive black hole also stands out because when these cosmic titans are usually found in the local (and recent) universe, they possess around 0.1% of their host galaxy mass. This supermassive black hole has a mass that is equivalent to around 40% of its host galaxy’s mass.

Scientists would expect such a gigantic black hole to be voraciously feeding and thus growing. Yet this black hole is gobbling up gas at a very slow rate, around a hundredth of the maximum possible accretion limit for a black hole this size.

A orange disk emiting white smoke across its plane with a black orb at its center

A feeding supermassive black hole surrounded by a glowing disk of gas and dust (Image credit: Emanuela Tortosa)

Because black holes have outer boundaries called “event horizons” that trap light (and everything else that passes them), if they aren’t greedily feeding and lighting up that matter, they tend to be invisible.

When they are surrounded by matter in a flattened cloud called an accretion disk that gradually feeds them, the gravitational influence of supermassive black holes causes immense friction, which causes this cosmic larder to glow. This emission allows us to detect supermassive black holes.

Breaking space news, the latest updates on rocket launches, skywatching events and more!

This dormant supermassive black hole was different, however. That’s because its tremendous mass granted it a huge gravitational influence that made it visible.

“Even though this black hole is dormant, its enormous size made it possible for us to detect,” team leader Ignas Juodžbalis from Cambridge’s Kavli Institute for Cosmology said in a statement. “Its dormant state allowed us to learn about the mass of the host galaxy as well.

“The early universe managed to produce some absolute monsters, even in relatively tiny galaxies.”

Why are early monster black holes such a big problem?

Since the JWST began making observations of the cosmos in 2022, the powerful instrument has discovered supermassive black holes at earlier stages of the universe.

Supermassive black holes are cosmic titans with masses equivalent to millions or even billions of suns. Unlike stellar mass black holes, which form when massive stars collapse, supermassive black holes are thought to grow via a chain of mergers of subsequently more massive black holes and from a steady diet of gas and dust from their host galaxies.

This process is thought to take over one billion years to create a supermassive black hole with a mass even at the lower scale of these monstrous masses. That means spotting a supermassive black hole in the recent history of our 13.8 billion-year-old cosmos isn’t problematic.

However, the JWST finding these cosmic titans when the universe was younger than one billion years old, sometimes as early as 600 million years after the Big Bang, is problematic. The tremendous size of this early black hole and the fact it isn’t even growing rapidly by feeding makes this problem even more confusing.

An illustration of a supermassive black hole binary

Two binary black holes slam together in the early universe to create a more monsterous supermassive black hole (Image credit: NASA)

“It’s possible that black holes are ‘born big,’ which could explain why the JWST spotted huge black holes in the early universe,” team member and Kavli researcher Roberto Maiolino said. “But another possibility is they go through periods of hyperactivity, followed by long periods of dormancy.”

Black holes push it past the limit to overfeed

Maiolino and colleagues revisited the problem of supermassive black holes in the early universe by running simulations of their growth mechanisms. The team found that the most likely explanation was that black holes could briefly exceed the limit placed on accretion.

This feeding cap is known as the “Eddington limit.” It suggests that any ravenously accreting celestial body will reach the point at which the radiation its feeding pumps out will push away material, cutting off its food supply.

This team thinks early black holes could experience spates of overfeeding or “super-Eddington accretion.” During these periods, greedy black holes would grow at hyper-accelerated rates. This would last for between 5 and 10 million years, after which the black hole would “nap” for 100 million years.

“It sounds counterintuitive to explain a dormant black hole with periods of hyperactivity, but these short bursts allow it to grow quickly while spending most of its time napping,” Maiolino said.

The dormancy period of these black holes lasts 10 to 20 times longer than the phase of super-Eddington accretion, which means astronomers are more likely to catch these cosmic titans during their nap time than at dinner.

The discovery of this titanic napping black hole is a breakthrough for this theory.

This monsterous early black hole may just be the tip of the iceberg, with the team suspecting that the early universe could be replete with these sleeping giants. Unfortunately, the dormant nature of these monsters will make them difficult for astronomers to discover.

“It’s likely that the vast majority of black holes out there are in this dormant state – I’m surprised we found this one, but I’m excited to think that there are so many more we could find,” Maiolino concluded.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
4K Video: Atlas 5 launches GOES-T weather satellite thumbnail

4K Video: Atlas 5 launches GOES-T weather satellite

If you would like to see more articles like this please support our coverage of the space program by becoming a Spaceflight Now Member. If everyone who enjoys our website helps fund it, we can expand and improve our coverage further. This page is available to Spaceflight Now members only Support Spaceflight Now’s unrivaled coverage…
Read More
1630 Megawatt French Nuclear Reactor Started 11 Years Late thumbnail

1630 Megawatt French Nuclear Reactor Started 11 Years Late

Home » Energy » 1630 Megawatt French Nuclear Reactor Started 11 Years Late The long-delayed Flamanville 3 EPR reactor in Normandy in northern France has begun delivering electricity to the grid. The 1630 MWe (net) pressurised water reactor was connected to the grid for the first time at 11:48 (local time) on Saturday. Construction work
Read More
ANA's A380 New Chitose Charter No. 1 Featured Articles Last Week September 19-25, 2009 thumbnail

ANA's A380 New Chitose Charter No. 1 Featured Articles Last Week September 19-25, 2009

 9月19日から25日までによく読まれた記事をまとめました。一番読まれたものは、全日本空輸(ANA/NH)のエアバスA380型機による初の成田-新千歳チャーターの記事でした。 新千歳空港に初めて夜間駐機されたANAのA380初号機(奥)=21年9月18日 PHOTO: Tadayuki YOSHIKAWA/Aviation Wire 第1位 初の新千歳夜間駐機も ANAのA380、発着異なる初チャーター終える  ANAは18日から2泊3日でA380による成田-新千歳チャーターを初開催。出発地と到着地が異なるA380のチャーターをANAが実施したのは初めてで、新千歳空港に同社がA380を夜間駐機したのも初めてでした。 第2位 ANAのA380、北海道内を遊覧飛行 新千歳発着で373人参加  第2位は、19日に実施されたANAのA380による北海道内の遊覧飛行。新千歳発着で、成田-新千歳チャーターとは別に参加者を募りました。乗客数はあと少しで380人でした。 第3位 ANA、ヤフオクにファーストクラスのシート出品 21日から入札受付  第3位は、ANAのファーストクラスモックアップなどを全日空商事が、ヤフーが運営するオークションサイト「ヤフオク!」に初出品。入札終了は26日午後9時から10時ごろを予定しています。 先週の注目記事 1. 初の新千歳夜間駐機も ANAのA380、発着異なる初チャーター終える 2. ANAのA380、北海道内を遊覧飛行 新千歳発着で373人参加 3. ANA、ヤフオクにファーストクラスのシート出品 21日から入札受付 4. 福岡空港、屋根なしバスで離着陸体感ツアー 11月に2日間 5. ANAのA380、那覇に初飛来 成田から2泊3日チャーター 6. ANA、A380で成田-新千歳チャーター初開催 2年3カ月ぶり飛来 7. ベトナム航空、成田発増便11月に後ろ倒し 関空発はエコノミー設定なし 8. JAL、羽田-パリ12月増便へ 冬ダイヤ欧州強化、北米発中部行き臨時便も 9. ロールス・ロイス、全電動航空機の初飛行成功 10. タイ国際航空、羽田-バンコク22年1月再開 787で週3往復 先週の注目記事バックナンバー鹿児島でパイロット逮捕が1位 先週の注目記事21年9月12日-18日
Read More
Nanotechnology in Dentistry Creates Stronger Fillings thumbnail

Nanotechnology in Dentistry Creates Stronger Fillings

Breakthroughs in nanotechnology don’t just limit their effect to the electronics industry. Recent advancements in the industry have allowed dentists to severely cut down on their workload in a way you may not have expected. Dentists use dental composites to restore teeth to their original hardness and rigidity, making them essential in dental repairs such
Read More
Endangered delicacy: Tropical sea cucumbers in trouble thumbnail

Endangered delicacy: Tropical sea cucumbers in trouble

Overharvest has put the Great Barrier Reef's tropical sea cucumber populations in peril, researchers have revealed, with strong demand for this delicacy from East and Southeast Asia. A team led by The University of Queensland's Dr Kenny Wolfe said fishery data collected along Australia's primary sea cucumber fishing ground showed the need for regulatory changes.…
Read More
Index Of News
Total
0
Share