The first-ever race between four self-driving cars and a Formula 1 driver just happened in Abu Dhabi

Wander the pits at any professional motorsports event, especially something like Formula 1, and you’ll see endless computer displays full of telemetry. Modern teams are awash in real-time digital feedback from the cars. I’ve been in many of these pits over the years and marveled at the streams of data, but never have I seen an instance of the Microsoft Visual Studio software development suite running there right amid the chaos.

But then, I’ve never attended anything like the inaugural Abu Dhabi Autonomous Racing League event this past weekend. The A2RL, as it is known, is not the first autonomous racing series: There’s the Roborace series, which saw autonomous race cars setting fast lap times while dodging virtual obstacles, and the Indy Autonomous Challenge, which most recently ran at the Las Vegas Motor Speedway during CES 2024.

While the Roborace focuses on single-car time trials and the Indy Autonomous series centers on oval action, A2RL set out to break new ground in a couple of areas.

A2RL put four cars on track, competing simultaneously for the first time. And, perhaps more significantly, it pitted the top-performing autonomous car against a human being, former Formula 1 pilot Daniil Kvyat, who drove for various teams between 2014 and 2020.

Autonomous Racing League
Image Credits: Autonomous Racing League

The real challenge was behind the scenes, with teams staffed with an impressively diverse cadre of engineers, ranging from fledgling coders to doctorate students to full-time race engineers, all fighting to find the limit in a very new way.

Unlike Formula 1, where 10 manufacturers design, develop and produce completely bespoke cars (sometimes with the help of AI), the A2RL race cars are entirely standardized to provide a level playing field. The 550-horsepower machines, borrowed from the Japanese Super Formula Championship, are identical, and the teams are not allowed to change a single component.

That includes the sensor array, which features seven cameras, four radar sensors, three lidar sensors and GPS to boot — all of which are used to perceive the world around them. As I would learn while wandering the pits and chatting to the various teams, not everybody is fully tapping into the 15 terabytes of data each car hoovers up every single lap.

Some teams, like the Indianapolis-based Code19, only started work on the monumental project of creating a self-driving car a few months ago. “There’s four rookie teams here,” said Code19 co-founder Oliver Wells. “Everyone else has been competing in competitions just like this, some of them for up to seven years.”

It’s all about the code

autonomous race - uae
Image Credits: Tim Stevens

Munich-based TUM and Milan-based Polimove have extensive experience running and winning in both Roborace and the Indy Autonomous Challenge. That experience carries over, as does the source code.

“On the one hand, the code is continuously developed and improved anyway,” said Simon Hoffmann, team principal at TUM. The team made adjustments to change the cornering behavior to suit the sharper turns in the road course and also adjust the overtaking aggression. “But in general, I would say we use the same base software,” he said.

Through the series of numerous qualifying rounds throughout the weekend, the teams with the greatest experience dominated the timing charts. TUM and Polimove were the only two teams to complete lap times in less than two minutes. Code19’s fastest lap, however, was just over three minutes; the other new teams were far slower.

This has created a competition that’s rarely seen in software development. While there have certainly been previous competitive coding challenges, like TopCoder or Google Kick Start, this is a very different sort of thing. Improvements in code mean faster lap times — and fewer crashes.

Kenna Edwards is a Code19 assistant race engineer and a student at Indiana University. She brought some previous app development experience to the table, but had to learn C++ to write the team’s antilock braking system. “It saved us at least a couple of times from crashing,” she said.

Unlike traditional coding problems that might require debuggers or other tools to monitor, improved algorithms here have tangible results. “A cool thing has been seeing the flat spots on the tire improve over the next session. Either they’ve reduced in size or in frequency,” Edwards said.

This implementation of theory not only makes for engaging engineering challenges but also opens up viable career paths. After earlier interning with Chip Ganassi Racing and General Motors, and thanks to her experience with Code19, Edwards starts full-time at GM Motorsports this summer.

An eye toward the future

Image Credits: Tim Stevens

That sort of development is a huge part of what A2RL is about. Shadowing the main on-track action is a secondary series of competitions for younger students and youth groups around the world. Before the main A2RL event, those groups competed with autonomous 1:8-scale model cars.

“The aim is, next year, we keep for the schools the smaller model cars, we’ll keep for the universities maybe doing it on go-karts, a bit bigger, they can play with the autonomous go-karts. And then, if you want to be in the big league, you start racing on these cars,” said Faisal Al Bannai, the secretary general of Abu Dhabi’s Advanced Technology Research Council, the ATRC. “I think by them seeing that path, I think you’ll encourage more guys to come into research, to come into science.”

It’s Al Bannai’s ATRC that’s footing the bill for the A2RL, covering everything from the cars to the hotels for the numerous teams, some of whom have been testing in Abu Dhabi for months. They also put on a world-class party for the main event, complete with concerts, drone races, and a ridiculous fireworks show.

The on-track action was a little less spectacular. The first attempt at a four-car autonomous race was aborted after one car spun, blocking the following cars. The second race, however, was far more exciting, featuring a pass for the lead when the University of Modena’s Unimore team car went wide. It was TUM that made the pass and won the race, taking home the lion’s share of the $2.25 million prize purse.

As for man vs. machine, Daniil Kvyat made quick work of the autonomous car, passing it not once but twice to huge cheers from the assembled crowd of more than 10,000 spectators who took advantage of free tickets to come see a little bit of history — plus around 600,000 more streaming the event.

The technical glitches were unfortunate. Still it was a remarkable event to witness and illustrated how far autonomy has come — and of course, how much more progress needs to be made. The fastest car was still upward of 10 seconds off of Kvyat’s time. However, it ran smooth, clean laps at an impressive speed. That’s in stark contrast to the first DARPA Grand Challenge in 2004, which saw every single competitor either crashing into a barrier or meandering off into the desert on an unplanned sojourn.

For A2RL, the real test will be whether it can evolve into a financially viable series. Advertising drives most motorsports, but here, there’s the added benefit of developing algorithms and technologies that manufacturers could reasonably apply in their cars.

ATRC’s Al Bannai told me that while the series organizers own the cars, the teams own the code and are free to license it: “What they compete on at the moment is the algorithm, the AI algorithm that makes this car do what it does. That belongs to each of the teams. It doesn’t belong to us.”

The real race, then, might not be on the track, but in securing partnerships with manufacturers. After all, what better way to inspire confidence in your autonomous technology than by showing it can handle traffic on the race track at 160 mph?

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
The global chip shortage affects the iPhone less than the rest of the industry thumbnail

The global chip shortage affects the iPhone less than the rest of the industry

A gyártók chipkészletei már minimálisra apadtak, és sok gyártó azt nyilatkozta, hogy a második negyedévben a megrendelt alkatrészek mindössze 80 százalékát kapták meg. A Counterpoint Research csökkentette az idei globális okostelefon-szállításokra vonatkozó becslését. A készülék kiszállításait eredetileg 1,45 milliárd darabra prognosztizálták 2021-re, ami 9 százalékos éves növekedést jelent, de a chiphiánynak köszönhetően a Counterpoint az…
Read More
FireAlpaca, the free digital painting tool, gets a new Brush store thumbnail

FireAlpaca, the free digital painting tool, gets a new Brush store

FireAlpaca is the free Digital Painting Software that is available in 10 languages and compatible with both Mac and Windows. Simple tools and controls let you draw an illustration easily. New convenient tools will be added one after another. Features Clear and crisp stroke, watercolor, too Pen, Pencil, AirBrush, and Watercolor are ready to use
Read More
PDF Expert review: A full-featured PDF editor for Apple devices thumbnail

PDF Expert review: A full-featured PDF editor for Apple devices

At a glanceExpert’s Rating ProsSyncs across Mac, iPhone, and iPadComprehensive editing and annotation toolsSimple, intuitive interfaceConsRequires annual paymentLifetime license enables use on Mac onlyOur VerdictPDF Expert is an excellent PDF editor that fits seamlessly in the Apple ecosystem. It’s our pick for Mac, iPad, and iPhone users. Best Prices Today: PDF Expert macOS includes a…
Read More
Rice sets a new record of 40,000 organ transplants annually.Two successful pig kidney transplants into humans thumbnail

Rice sets a new record of 40,000 organ transplants annually.Two successful pig kidney transplants into humans

日本と桁が違う…!連日コロナのニュースで埋もれてしまってますが、医療の世界はブレイクスルー続き。アメリカでは、昨年1年間で臓器移植の実施件数がクリスマスの1週間前に4万件の大台に乗って、2019年の約3万9700件をしのぐ過去最高に達しました。最終的には年間41万5000件前後となる見込みで、1日に114人の命が救われた計算です。アルゴリズムがドナーと患者をマッチングこれだけの数を裁くのは容易なことではありません。移植先進国アメリカですら1954年の肝臓移植初成功からずっと30年も移植はだいたい同じ病院で繰り返されていました。近隣で移植待ちの患者さんが見つからなければ臓器はポイ、だったのです。転機が訪れたのは1984年。全米規模に拡大してマッチングを民間NPOに一任することが国会で決まり、UNOS(全米臓器分配ネットワーク:United Network for Organ Sharing)というところが全米57のOPO(臓器調達機関:Organ Procurement Organization)と病院からデータを集めて、アルゴリズムでレシピエント選定(血液型や抗体反応、大きさといった適応条件のすりあわせ)を進めるスタイルになって規模が拡大しました。2004年から2012年までは2万8000件前後で横ばいだったのが、2013年から50%近く急増。2020年には8週間移植できない期間があったので減少に転じましたが、それを取り返したかたちです。UNOSの地元メディアのRichmond Times--Dispatchが気になるマッチングの流れをくわしく取材しているのですが、アルゴリズムは常に改善していて、改定時には44人から成る理事会が審理にかけて承認しているんだそうですよ。アルゴリズムで考慮するのは、移植でどれくらい延命できるか、移植に持ちこたえられる体かどうか。有名人、金持ち、いい保険に入ってる人が優先されることはないとのこと。さらに次のようなデータまで追跡しています。・臓器待ち患者の数・臓器到着前に死亡する患者の数(病院別)・若い臓器、健康な臓器を選り好みする病院・医師・断られた臓器のその後(ほかの病院で移植に活用されたか)・臓器移植しない場合の患者の余命 医師が臓器を引き取りに行って直に検分しなくてもいいように、写真や映像で事前に臓器の状態を確認できるしくみも準備中。いろいろすごい。国民の過半数がドナーアメリカでは運転免許をとるとき「死後献体します」っていう項目を選ぶと、免許証に表示されて救急車の人がひと目でわかるようになっています。そんな手軽さもあってか、UNOSのBrian Shepard CEOによると、献体登録しているアメリカ人は5割をちょっと出るほどもいるんだとか。なんと国民の過半数がドナーだったのです! そういや訳者も永住組だけど、献体はYES選んでますもんね。ちなみにオピオイド鎮痛薬中毒で2019年だけで5万人が死亡したアメリカですが、薬物過剰摂取による死亡者(2020年は9万3331人)は献体増加分の1%ぽっち。COVID-19による死亡者も献体はできないので、やはりこんなどん底の混乱のなかで人の役に立ちたいと考える健康体ドナーが増えたことが大きいみたい。秋にはブタの腎臓を脳死患者に初移植、しっかり尿ができた!しかしまあ、これだけ国民の理解と協力、関連団体の尽力があっても1日約110人が移植待ちで、うち30人は臓器を待ちきれなくて死亡・病態悪化しているのが現実です。圧倒的な臓器不足。これをなんとかしようと医師らが目を付けたのがブタの臓器で。昨年9月にはニューヨーク大ランゴン移植研究所が初の移植手術に成功し、11月下旬の2度目の手術にも成功、大きな希望の光となりました。気になるレシピエントは次の2人の方々です。・9月:生命維持装置を外す直前の脳死患者。家族は「研究のためになるなら」と同意。・11月:人工呼吸器を外すと体機能を維持できないドナー希望者。NY一円に登録ドナー650万人を抱える非営利団体LiveOnNYの協力で探し当てた。腎臓は元の部位ではなく上腿の血管につなげて保護材でカバーしながら54時間経過を観察したのですが、2回とも拒否反応は出なくて、人間の臓器移植と同量の尿がすぐできました。手術を率いたRobert Montgomery医師は声明のなかでこう喜びを語っています。「2回目も初回手術の結果を再現できました。これにより、(拒否反応が出ないよう)遺伝子操作を加えた臓器が、命のギフトを待ちわびる世界中の人たちへの再生可能な臓器の提供源になりうることが引き続き示されたことになります」ほかの哺乳類と違って、人の臓器はα-gal(アルファガル)という糖分を生成できません。なので、生成できる臓器をできない臓器に移植するとどうしても拒否反応が出てしまうのですが、同大が移植で使ったブタの腎臓はα-galを生成しないように遺伝子が操作された臓器(遺伝子操作の部分はユナイテッド・セラピューティクスの子会社Revivicorが担当しました)。だからアレルギーを引き起こす心配がないというわけです。動物の臓器には抵抗を感じる人もいるかと思ったら、意外と世論調査では大多数の人が「広まれば支持する」と答えているのだそう。異種移植の実用化はまだ先のことだけど、臓器を待ちながらこの世を去る人がひとりでも減ってくれるのならこんなに励まされるニュースはありませんね!Sources: Richmond Times--Dispatch、 NYU Langone Health、Gizmodo US
Read More
Index Of News
Total
0
Share