AI Can Now Forget Copyrighted and Other Material

Researchers at The University of Texas at Austin have developed what they believe is the first machine unlearning method applied to image-based generative AI. This method offers the ability to look under the hood and actively block and remove any violent images or copyrighted works without losing the rest of the information in the model.

Image-to-image models are the primary focus of this research. They take an input image and transform it — such as creating a sketch, changing a particular scene and more — based on a given context or instruction.

This new machine unlearning algorithm provides the ability of a machine learning model to “forget” or remove content if it is flagged for any reason without the need for retraining the model from scratch. Human teams handle the moderation and removal of content, providing an extra check on the model and ability to respond to user feedback.

Brian Wang is a Futurist Thought Leader and a popular Science blogger with 1 million readers per month. His blog Nextbigfuture.com is ranked #1 Science News Blog. It covers many disruptive technology and trends including Space, Robotics, Artificial Intelligence, Medicine, Anti-aging Biotechnology, and Nanotechnology.

Known for identifying cutting edge technologies, he is currently a Co-Founder of a startup and fundraiser for high potential early-stage companies. He is the Head of Research for Allocations for deep technology investments and an Angel Investor at Space Angels.

A frequent speaker at corporations, he has been a TEDx speaker, a Singularity University speaker and guest at numerous interviews for radio and podcasts.  He is open to public speaking and advising engagements.

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
Study: Feral Horses Form Complex Multilevel Societies thumbnail

Study: Feral Horses Form Complex Multilevel Societies

A team of researchers from Kyoto University and the Université de Strasbourg has applied drone techniques for the observation of feral horses living in Serra D’Arga, a mountain located in the north of Portugal. Maeda et al. took aerial photos of individual horses that appeared in pre-fixed areas and collected positional data. Image credit: Maeda…
Read More
無人機MQ-4C、IFC-4量産機が米海軍へ初納入 EP-3E後継 thumbnail

無人機MQ-4C、IFC-4量産機が米海軍へ初納入 EP-3E後継

 ノースロップ・グラマンは、無人多用途機MQ-4C「トライトン」の最新マルチ情報収集仕様の量産機を米海軍に初納入した。「IFC-4 (Integrated Functional Capability Four:統合機能能力第4仕様)」と呼ばれるもので、高高度滞空型の洋上情報収集・警戒監視・偵察(ISR)プラットフォームとなる。 ノースロップ・グラマンMQ-4C(同社提供)  機体は現地時間2月1日にメリーランド州パタクセントリバー海軍航空基地に引き渡された。MQ-4Cは米空軍の無人偵察機RQ-4「グローバルホーク」の米海軍向けで、洋上ISRパトロール、信号情報、捜索・救助、通信中継など幅広い任務に対応する見込み。また、哨戒機P-8と連携して任務に就くことを想定している。  MQ-4Cは360度全周用AESA洋上レーダー、フル・モーションの光学・赤外線ビデオ・ストリーミング、高高度飛行能力、高い滞空性能、フル・スペクトラムの信号情報、艦艇・航空機・情報機関の地上局へ多種多様なデータを送ることができる複数の経路などを備える。  機内の搭載量を増やすために機体を強化し、ひょうやバードストライク、突風の荷重を防ぐ翼、除氷、雷保護システムも搭載し、厳しい海洋気象環境下でも降下や上昇ができる。  IFC-4仕様のMQ-4Cは、電子戦偵察機EP-3E「アリエス」が行っている情報収集任務を引き継ぐ見通し。 関連リンクNorthrop Grumman ・空自向けグローバルホークが初飛行 三沢配備の無人偵察機(21年4月20日) ・哨戒機P-8のいま 各国で導入、米海軍は102機に(20年7月28日)
Read More
McCarthy’s push to ascend to House speaker relies on Trump thumbnail

McCarthy’s push to ascend to House speaker relies on Trump

BAKERSFIELD, Calif. The next speaker of the U.S. House could very well hail from California — not Nancy Pelosi’s slice of the Golden State, but the other California, Donald Trump’s California.House Republican leader Kevin McCarthy is a son of the Central Valley, a farming and oil-pumping heartland that eagerly embraced the former president. A swath…
Read More
Index Of News
Total
0
Share