Engineering the amoeba for biosynthesis of a cannabinoid precursor and other polyketides

Abstract

Aromatic polyketides are natural polyphenolic compounds with a broad spectrum of pharmacological activities. Production of those metabolites in the model organisms Escherichia coli and Saccharomyces cerevisiae has been limited by the extensive cellular engineering needed for the coordinated biosynthesis of polyketides and their precursors. In contrast, the amoeba Dictyostelium discoideum is a native producer of secondary metabolites and harbors a wide, but largely unexplored, repertoire of genes for the biosynthesis of polyketides and terpenoids. Here we present D. discoideum as an advantageous chassis for the production of aromatic polyketides. By expressing its native and cognate plant polyketide synthase genes in D. discoideum, we demonstrate production of phlorocaprophenone, methyl-olivetol, resveratrol and olivetolic acid (OA), which is the central intermediate in the biosynthesis of cannabinoids. To facilitate OA synthesis, we further engineered an amoeba/plant inter-kingdom hybrid enzyme that produced OA from primary metabolites in two enzymatic steps, providing a shortcut in a synthetic cannabinoid pathway using the D. discoideum host system.

This is a preview of subscription content

Access options

Subscribe to Journal

Get full journal access for 1 year

92,52 €

only 7,71 € per issue

All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Data availability

Nucleotide sequence data were obtained from the GenBank (https://www.ncbi.nlm.nih.gov/genbank/). The Codon Usage for organisms was obtained from the Kazusa Codon Usage Database (https://www.kazusa.or.jp/codon/). The minimal datasets generated during the study are available as Supplementary Information or as source data. Biological and genetic materials are available from V.V. and F.H. upon reasonable request and completion of a material transfer agreement. Source data are provided with this paper.

References

  1. 1.

    Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).

    CAS  PubMed  Google Scholar 

  2. 2.

    Austin, M. B. & Noel, J. P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

    CAS  PubMed  Google Scholar 

  3. 3.

    Lim, Y. P., Go, M. K. & Yew, W. S. Exploiting the biosynthetic potential of type III polyketide synthases. Molecules 21, 806 (2016).

  4. 4.

    Morita, H., Wong, C. P. & Abe, I. How structural subtleties lead to molecular diversity for the type III polyketide synthases. J. Biol. Chem. 294, 15121–15136 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Sunil, C. & Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 166, 112066 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    de la Lastra, C. A. & Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 35, 1156–1160 (2007).

    PubMed  Google Scholar 

  7. 7.

    Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    CAS  PubMed  Google Scholar 

  8. 8.

    Fellermeier, M. & Zenk, M. H. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett. 427, 283–285 (1998).

    CAS  PubMed  Google Scholar 

  9. 9.

    Whiting, P. F. et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 313, 2456–2473 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Palmer, C. M. & Alper, H. S. Expanding the chemical palette of industrial microbes: metabolic engineeri ng for type III PKS-derived polyketides. Biotechnol. J. 14, 1700463 (2019).

    Google Scholar 

  12. 12.

    Luo, X. et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    Chen, X. et al. Terpene synthase genes in eukaryotes beyond plants and fungi: occurrence in social amoebae. Proc. Natl Acad. Sci. USA 113, 12132–12137 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Barnett, R. & Stallforth, P. Natural products from social amoebae. Chemistry 24, 4202–4214 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Zucko, J. et al. Polyketide synthase genes and the natural products potential of Dictyostelium discoideum. Bioinformatics 23, 2543–2549 (2007).

    CAS  PubMed  Google Scholar 

  17. 17.

    Ghosh, R. et al. Dissecting the functional role of polyketide synthases in Dictyostelium discoideum: biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol. J. Biol. Chem. 283, 11348–11354 (2008).

    CAS  PubMed  Google Scholar 

  18. 18.

    Heidel, A. J. et al. Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res. 21, 1882–1891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Austin, M. B. et al. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nat. Chem. Biol. 2, 494–502 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Herbst, D. A., Townsend, C. A. & Maier, T. The architectures of iterative type I PKS and FAS. Nat. Prod. Rep. 35, 1046–1069 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Shimizu, Y., Ogata, H. & Goto, S. Type III polyketide synthases: functional classification and phylogenomics. ChemBioChem 18, 50–65 (2017).

    CAS  PubMed  Google Scholar 

  22. 22.

    Fey, P., Kowal, A. S., Gaudet, P., Pilcher, K. E. & Chisholm, R. L. Protocols for growth and development of Dictyostelium discoideum. Nat. Protoc. 2, 1307–1316 (2007).

    CAS  PubMed  Google Scholar 

  23. 23.

    Morris, H. R., Taylor, G. W., Masento, M. S., Jermyn, K. A. & Kay, R. R. Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature 328, 811–814 (1987).

    CAS  PubMed  Google Scholar 

  24. 24.

    Kay, R. R. & Jermyn, K. A. A possible morphogen controlling differentiation in Dictyostelium. Nature 303, 242–244 (1983).

    CAS  PubMed  Google Scholar 

  25. 25.

    Carvalho, A., Hansen, E. H., Kayser, O., Carlsen, S. & Stehle, F. Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res. 17, fox037 (2017).

  26. 26.

    Taura, F. et al. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett. 583, 2061–2066 (2009).

    CAS  PubMed  Google Scholar 

  27. 27.

    Gagne, S. J. et al. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc. Natl Acad. Sci. USA 109, 12811–12816 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Morgan-Kiss, R. M. & Cronan, J. E. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J. Biol. Chem. 279, 37324–37333 (2004).

    CAS  PubMed  Google Scholar 

  29. 29.

    Kay, R. R. The biosynthesis of differentiation-inducing factor, a chlorinated signal molecule regulating Dictyostelium development. J. Biol. Chem. 273, 2669–2675 (1998).

    CAS  PubMed  Google Scholar 

  30. 30.

    Narita, T. B., Koide, K., Morita, N. & Saito, T. Dictyostelium hybrid polyketide synthase, SteelyA, produces 4-methyl-5-pentylbenzene-1,3-diol and induces spore maturation. FEMS Microbiol. Lett. 319, 82–87 (2011).

    CAS  PubMed  Google Scholar 

  31. 31.

    Saito, T. et al. Identification of new differentiation inducing factors from Dictyostelium discoideum. Biochim. Biophys. Acta 1760, 754–761 (2006).

    CAS  PubMed  Google Scholar 

  32. 32.

    Salehi, B. et al. Resveratrol: a double-edged sword in health benefits. Biomedicines 6, 91 (2018).

  33. 33.

    Hoefgen, S. et al. Facile assembly and fluorescence-based screening method for heterologous expression of biosynthetic pathways in fungi. Metab. Eng. 48, 44–51 (2018).

    CAS  PubMed  Google Scholar 

  34. 34.

    Veltman, D. M., Keizer-Gunnink, I. & Haastert, P. J. An extrachromosomal, inducible ex pression system for Dictyostelium discoideum. Plasmid 61, 119–125 (2009).

    CAS  PubMed  Google Scholar 

  35. 35.

    Milke, L., Aschenbrenner, J., Marienhagen, J. & Kallscheuer, N. Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl. Microbiol. Biotechnol. 102, 1575–1585 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    Wang, S. et al. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab. Eng. 29, 153–159 (2015).

    CAS  PubMed  Google Scholar 

  37. 37.

    Unkles, S. E., Valiante, V., Mattern, D. J. & Brakhage, A. A. Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chem. Biol. 21, 502–508 (2014).

    CAS  PubMed  Google Scholar 

  38. 38.

    Katz, K. S. & Ratner, D. I. Homologous recombination and the repair of double-strand breaks during cotransformation of Dictyostelium discoideum. Mol. Cell. Biol. 8, 2779–2786 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wiegand, S., Kruse, J., Gronemann, S. & Hammann, C. Efficient generation of gene knockout plasmids for Dictyostelium discoideum using one-step cloning. Genomics 97, 321–325 (2011).

    CAS  PubMed  Google Scholar 

  40. 40.

    Kuspa, A. & Loomis, W. F. Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc. Natl Acad. Sci. USA 89, 8803–8807 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sekine, R., Kawata, T. & Muramoto, T. CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci. Rep. 8, 8471 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tan, Z., Clomburg, J. M. & Gonzalez, R. Synthetic pathway for the production of olivetolic acid in Escherichia coli. ACS Synth. Biol. 7, 1886–1896 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Lu, Y. et al. Production of the soluble human Fas ligand by Dictyostelium discoideum cultivated on a synthetic medium. J. Biotechnol. 108, 243–251 (2004).

    CAS  PubMed  Google Scholar 

  44. 44.

    Vaknin, Y. et al. Identification and characterization of a novel Aspergillus fumigatus rhomboid family putative protease, RbdA, involved in hypoxia sensing and virulence. Infect. Immun. 84, 1866–1878 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Levi, S., Polyakov, M. & Egelhoff, T. T. Green fluorescent protein and epitope tag fusion vectors for Dictyostelium discoideum. Plasmid 44, 231–238 (2000).

    CAS  PubMed  Google Scholar 

  46. 46.

    Fey, P., Dodson, R. J., Basu, S. & Chisholm, R. L. In: Dictyostelium discoideum Protocols (eds Eichinger, L. & Rivero, F.) 59–92 (Humana Press, 2013).

  47. 47.

    Hirst, J., Kay, R. R. & Traynor, D. Dictyostelium cultivation, transfection, microscopy and fractionation. Bio. Protoc. 5, 1485 (2015).

  48. 48.

    Meier, K. et al. Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media. Biochem. Eng. J. 109, 228–235 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Heinecke for conducting NMR experiments and L. Reimer for technical support. This work was supported by two grants of the European Social Fund ESF ‘Europe for Thuringia’ projects MiQWi (2015FGR0097, to F.H.) and SphinX (2017FGR0073, to V.V.), the Leibniz Research Cluster in the frame of the BMBF Strategic Process Biotechnology 2020+ (031A360A, to V.V.), the BMBF funding program ‘GO-Bio initial’ (FKZ161B097, to F.H.) and the BMBF-funded InfectControl consortium (03ZZ0813A, to L.R.).

Author information

Author notes

  1. These authors contributed equally: Christin Reimer, Johann E. Kufs.

Affiliations

  1. Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany

    Christin Reimer & Falk Hillmann

  2. Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany

    Christin Reimer & Johann E. Kufs

  3. Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany

    Johann E. Kufs, Julia Rautschek & Vito Valiante

  4. Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany

    Johann E. Kufs & Lars Regestein

Contributions

C.R., J.E.K., V.V. and F.H. designed the research. C.R. and J.E.K. performed experiments and analyzed the data. L.R. supervised the respiration activity measurements. J.R. analyzed the NMR data. C.R., J.E.K., V.V. and F.H. wrote the manuscript.

Corresponding authors

Correspondence to Vito Valiante or Falk Hillmann.

Ethics declarations

Competing interests

C.R., J.E.K., V.V. and F.H. declare the following competing financial interest: part of this work was used to file patent application PCT/EP2021/068240.

Additional information

Peer review information Nature Biotechnology would like to thank Rasmus Frandsen, Rob Kay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reimer, C., Kufs, J.E., Rautschek, J. et al. Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-021-01143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-021-01143-8

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
The Seabed Solution thumbnail

The Seabed Solution

The three-year voyage of the HMS Challenger was one of the greatest scientific expeditions in an era with quite a few of them. The former warship departed England in 1872 with a complement of 237 on a mission to collect marine specimens and also to map and sample huge swaths of the seafloor. The ship…
Read More
Controlling turbulent heat transport by manipulating coherent structures thumbnail

Controlling turbulent heat transport by manipulating coherent structures

Instantaneous flow fields (a, b) and time-averaged heat flux fields (c, d) in a canonical thermal turbulence system with rectangular geometry. By applying spatial confinement through decreasing the lateral sizes of the system, the domain-sized circulatory flow is replaced by more energetic thermal coherent structures (indicated by the red/blue structures). This manipulation in the coherent
Read More
Rocket Lab launches Swedish satellite, fails to catch booster thumbnail

Rocket Lab launches Swedish satellite, fails to catch booster

by Jeff Foust — November 4, 2022 An Electron rocket lifts off Nov. 4 carrying the MATS satellite. While the rocket successfully deployed the satellite in orbit, the company was unable to perform a mid-air recovery of the booster. Credit: Rocket Lab webcast WASHINGTON — Rocket Lab successfully launched a Swedish atmospheric science satellite on
Read More
La pollution des fleuves et rivières par nos médicaments est considérable, révèle une vaste étude thumbnail

La pollution des fleuves et rivières par nos médicaments est considérable, révèle une vaste étude

Parmi les multiples facteurs de la pollution de l'eau des fleuves et des rivières, il en est un dont les effets sont délétères sur la biodiversité. Les résidus des médicaments absorbés puis rejetés dans les eaux usées modifient, agressent ou tuent la faune aquatique. En étudiant 258 rivières réparties sur 104 pays, de tous les continents, représentant l'empreinte pharmaceutique de 471,4 millions…
Read More
Index Of News
Total
0
Share