HIV infection: Better understanding the reservoir of virus in the body

LMU researchers have developed a method that allows resting human immune cells to be genetically analyzed in detail for the first time.

CD4+ T cells are important parts of the immune system and play a key role in defending the body against pathogens. As they possess a great variety of defense mechanisms against HIV in their resting state, they are infected only very rarely — but these few infected cells form a latent reservoir for HIV in the body that currently cannot be reached by antiviral drugs. Consequently, the virus can spread again from there after activation of the CD4+ T cells. Understanding how HIV interacts with resting CD4+ T cells is essential for finding new therapeutic approaches. Scientists led by Prof. Oliver T. Keppler from the Max von Pettenkofer Institute at LMU have now developed a method that for the first time allows these specific immune cells to be genetically manipulated under physiological conditions in an efficient and uncomplicated manner. As the authors report in the journal Nature Methods, this permits previously unobtainable insights into the biology of these cells.

Resting CD4+ T cells had been scarcely amenable to genetic manipulations, because the available methods generally presuppose dividing cells, as Keppler explains. “And resting cells do not divide by definition.” As the first step in the development of the new method, the team of scientists optimized the cultivation conditions. As a result, the researchers were able to keep these cells alive in the laboratory after extracting them from the blood of healthy donors not just for 3-4 days as before, but for up to six weeks. The decisive progress came with an advance in nucleofection, a special method that allows reagents to be delivered into the nucleus of a cell. Using this technique, the researchers introduced the genetic scissors CRISPR-Cas into resting CD4+ T cells, enabling them to make targeted modifications to the genome of the host cells — for example, by eliminating genes by means of so-called knockouts. “This combination worked very efficiently, and we were able to reach and genetically manipulate around 98 percent of the cells. Moreover, we did this without activating the CD4+ T cells,” says Keppler. “What was particularly exciting was that we were able to eliminate up to six genes simultaneously with high efficiency by means of a single nucleofection. Nobody had managed to do that in primary cells before — and we did it with cells isolated from an intact organ.”

In the future, the researchers will thus be able to eliminate individual genes and whole signaling pathways and analyze their functions. By knocking out the corresponding genes, they have already managed to clarify whether four previously controversial cellular factors play a role in infection with HIV or not.

On top of this, they pursued a second “knock-in” approach, whereby additional or slightly modified genes are inserted, such as a gene for green fluorescent protein (GFP). With the help of this protein, researchers can analyze how the activity of a target gene changes under certain conditions, or they can mark specific proteins. “All these things together give us the opportunity for the first time to investigate the interaction of HIV with human resting CD4+ T cells under physiological conditions,” explains Adrian Ruhle, co-lead author of the study. “But we can also investigate these cells better in their general role as immune cells beyond HIV.” In the long term, the researchers hope that having a better understanding of the biology of these cells will lead to new approaches for the total elimination of HIV from the bodies of patients, as there are still around 37 million people worldwide infected with the virus.

Story Source:

Materials provided by Ludwig-Maximilians-Universität München. Note: Content may be edited for style and length.

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
東セン傘下ACG、A220を20機発注 thumbnail

東セン傘下ACG、A220を20機発注

 エアバスは現地時間2月14日、東京センチュリー(8439)が100%出資する米国の航空機リース会社アビエーション・キャピタル・グループ(ACG)がA220を20機確定発注する契約を締結したと発表した。 ACGが20機発注したA220=PHOTO: Tadayuki YOSHIKAWA/Aviation Wire  A220は、カナダのボンバルディアが開発した小型旅客機「Cシリーズ」の名称を変更したもの。Cシリーズの製造や販売を担う事業会社「CSALP」を、エアバスが2018年7月に買収したことで改めた。Cシリーズは、CS100(100-135席)と、中胴が3.7メートル長いCS300(130-160席)の2機種が開発され、CS100をA220-100、CS300をA220-300に改称した。  今回の契約は2021年12月30日に締結した覚書に基づくもので、開催中のシンガポール航空ショーで発表された。この日の契約では、5機のA321XLRを含む40機のA320neoファミリーを確定発注している。 関連リンクAviation Capital GroupAirbus A220 ・東京センチュリー傘下の米ACG、A321XLR発注 A220も覚書締結(21年12月31日) ・エアバスのA220、中部で日本初デモフライト 快適性アピール(19年8月6日) ・なぜA220は中部でデモフライトを実施したのか 特集・日本の100-150席市場を考える(19年8月14日) ・A220ってどんな機体? 特集・エアバス機になったCシリーズ(18年7月11日) ・エアバス、A220発表 Cシリーズを改称(18年7月10日)
Read More
New metamaterial-based strategy to combine and transmit multiple light modes thumbnail

New metamaterial-based strategy to combine and transmit multiple light modes

Metamaterials enable specific light propagation modes using a multimode waveguide. (Left) Conceptual illustration of a 1D gradient-index metamaterial (GIM) structure with refractive index continuously varying along the direction of light propagation. (Right) GIM-based coupler for a 16-channel MDM system; (bottom) SEM images of coupling regions. Credit: He et al., doi 10.1117/1.AP.5.5.056008. The past few years
Read More
Wastewater Monitoring Offers Powerful Tool for Tracking COVID and Other Diseases thumbnail

Wastewater Monitoring Offers Powerful Tool for Tracking COVID and Other Diseases

In 2020 experts at the U.S. Biomedical Advanced Research and Development Authority (BARDA) and other public health agencies watched a presentation that many thought was impractical at the time. Several companies proposed to regularly sample wastewater from sewers and treatment plants and run tests to detect SARS-CoV-2—the virus that causes COVID-19. People excrete the virus…
Read More
Earth’s Atmospheric Glow thumbnail

Earth’s Atmospheric Glow

Michelle ZajacJan 30, 2024 This high exposure photograph revealed Earth’s atmospheric glow against the backdrop of a starry sky in this image taken from the International Space Station on Jan. 21, 2024. At the time, the orbital lab was 258 miles above the Pacific Ocean northeast of Papua New Guinea. The Nauka science module and
Read More
Massively parallel phenotyping of coding variants in cancer with Perturb-seq thumbnail

Massively parallel phenotyping of coding variants in cancer with Perturb-seq

AbstractGenome sequencing studies have identified millions of somatic variants in cancer, but it remains challenging to predict the phenotypic impact of most. Experimental approaches to distinguish impactful variants often use phenotypic assays that report on predefined gene-specific functional effects in bulk cell populations. Here, we develop an approach to functionally assess variant impact in single…
Read More
Index Of News
Total
0
Share