Megalodon may have been warm-blooded unlike most other sharks

Life

Evidence is mounting that megalodon could have been warm-blooded, unlike most modern sharks, hinting at how it grew to be so big and also why it went extinct

By Sophia Quail

megalodon

An artist’s impression of megalodon

Alex Boersma/PNAS

The iconic 15-metre-long megatooth shark known as megalodon – who reigned the world’s waters up to 3.6 million years ago – was warm-blooded in some of its body parts, according to a chemical analysis of fossilised megalodon teeth. This evolutionary adaptation helps explain how the fierce apex predator managed to get so gigantic and why it went extinct.

Robert Eagle at the University of California, Los Angeles, and his colleagues analysed 29 gigantic, fossilised megalodon teeth from the Pliocene and Miocene epochs, from the North Pacific and North Atlantic Oceans.

They looked at how two isotopes, carbon-13 and oxygen-18, found in the shark’s preserved teeth bond together, knowing from other research that the more clumped they are, the warmer the body.

Their analysis suggested the megalodon’s overall, average body temperature was about 27˚C (80.6˚F). That is around 7˚C  warmer than the oceans it was swimming in. Warm-bloodedness is rare in sharks, with only five out of 500 modern-day species having the adaptation.

Like those six extant sharks, the megalodon was also probably just regionally endothermic – meaning it made its own heat from metabolism only in certain parts of its body and was still colder than warm-blooded marine mammals, says Eagle.

Not only was the shark probably warming its brain, eyes and digestive system, but as its body temperature was about 5°C higher than modern-day warm-blooded sharks, that leaves the possibility that it could have been capable of mammal-like full-body endothermy, says Lucas Legendre at the University of Texas at Austin. But that is unlikely, he says.

The findings are in line with prior research suggesting that being warm-blooded is one of the key evolutionary pathways for a shark to become gigantic, says Jack Cooper at Swansea University in the UK.

A lot about this megashark’s general lifestyle can also be inferred, he says. Like warm-blooded creatures, it was probably “active and so could swim faster, encounter more prey and travel further in migrations”, says Cooper.

Yet, it is a double-edged sword for gigantic animals to be warm-blooded, as it requires they eat a lot of food to stay warm – as much as 100,000 calories a day. This makes them poorly adapted to rapid changes in the environments, says Eagle, such as the sea level drops that happened during the Pliocene.

“The biggest and scariest creatures are not necessarily the ones that are the strongest in evolutionary terms,” says Eagle.

Topics:

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
Researchers Sequence Genome of Lychee thumbnail

Researchers Sequence Genome of Lychee

An international team of scientists from the United States, China, Singapore, France and Canada has decoded the genome of the lychee (Litchi chinensis), an exotic tropical fruit with a distinct flavor. Their results will improve understanding of the lychee genome, accelerating genetic improvement of the fruit and its relatives in the family Sapindaceae (maple and…
Read More
How to plan a walking tour of Glasgow in the footsteps of Charles Rennie Mackintosh thumbnail

How to plan a walking tour of Glasgow in the footsteps of Charles Rennie Mackintosh

TravelThe 19th-century designer's distinctive aesthetic influenced art movements like secession and art nouveau across Europe, but it's to his Scottish birthplace that he left the greatest legacy.Published July 2, 20236 min readThis article was produced by National Geographic Traveller (UK).Glasgow is a design-lovers’ dream: stately buildings abound, collections like The Burrell are world renowned and
Read More
Quantum computers also have maximum speed thumbnail

Quantum computers also have maximum speed

מדענים בטכניון ובאוניברסיטת בון מציגים את הגורמים המכתיבים את מהירותם המקסימלית של חישובים קוונטיים. זאת באמצעות ניסוי המשתמש ב "גלי חומר" קוונטיים גולות קוונטיות בפעולה – איור אמנותי של גל-חומר המתגלגל במורד מדרון תלול. קרדיט: Enrique Sahagún, Scixel. באדיבות דוברות הטכניון חוקרים מהטכניון ומאוניברסיטת בון ערכו ניסוי המשיב על השאלה הבאה: מה מגביל את מהירות…
Read More
Nasa’s new 3d-printed superalloy can handle high temperatures thumbnail

Nasa’s new 3d-printed superalloy can handle high temperatures

Multiprincipal-element alloys are an important class of materials due to their mechanical and oxidation-resistant properties. A team of innovators from NASA and The Ohio State University detailed the characteristics of the new alloy, GRX-810, an oxide-dispersion-strengthened NiCoCr-based alloy. GRX-810 uses laser powder bed fusion to disperse nanoscale Y2O3 particles throughout the microstructure without resource-intensive processing
Read More
Index Of News
Total
0
Share