Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins

  • 1.

    Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    CAS  PubMed  Google Scholar 

  • 2.

    Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10, 1127–1133 (2013).

    CAS  PubMed  Google Scholar 

  • 3.

    Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Buxbaum, A. R., Haimovich, G. & Singer, R. H. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16, 95–109 (2015).

    CAS  PubMed  Google Scholar 

  • 5.

    Jaschke, A. Genetically encoded RNA photoswitches as tools for the control of gene expression. FEBS Lett. 586, 2106–2111 (2012).

    PubMed  Google Scholar 

  • 6.

    You, M. & Jaffrey, S. R. Designing optogenetically controlled RNA for regulating biological systems. Ann. N.Y. Acad. Sci. 1352, 13–19 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Tischer, D. & Weiner, O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15, 551–558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Zhang, L., Chen, C., Fan, X. & Tang, X. Photomodulating gene expression by using caged siRNAs with single-aptamer modification. Chembiochem 19, 1259–1263 (2018).

    CAS  PubMed  Google Scholar 

  • 9.

    Zhang, L. et al. Caged circular siRNAs for photomodulation of gene expression in cells and mice. Chem. Sci. 9, 44–51 (2018).

    CAS  PubMed  Google Scholar 

  • 10.

    Wu, L. et al. Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells. Nucleic Acids Res. 41, 677–686 (2013).

    CAS  PubMed  Google Scholar 

  • 11.

    Ando, H., Furuta, T., Tsien, R. Y. & Okamoto, H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat. Genet. 28, 317–325 (2001).

    CAS  PubMed  Google Scholar 

  • 12.

    Ando, H., Furuta, T. & Okamoto, H. Photo-mediated gene activation by using caged mRNA in zebrafish embryos. Methods Cell. Biol. 77, 159–171 (2004).

    CAS  PubMed  Google Scholar 

  • 13.

    Chaulk, S. G. & MacMillan, A. M. Caged RNA: photo-control of a ribozyme reaction. Nucleic Acids Res. 26, 3173–3178 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Zhou, W. et al. Spatiotemporal control of CRISPR/Cas9 function in cells and zebrafish using light-activated guide RNA. Angew. Chem. Int. Ed. Engl. 59, 8998–9003 (2020).

  • 15.

    Wang, P. et al. Mapping spatial transcriptome with light-activated proximity-dependent RNA labeling. Nat. Chem. Biol. 15, 1110–1119 (2019).

    CAS  PubMed  Google Scholar 

  • 16.

    Benhalevy, D., Anastasakis, D. G. & Hafner, M. Proximity-CLIP provides a snapshot of protein-occupied RNA elements in subcellular compartments. Nat. Methods 15, 1074–1082 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Gonzaga, E. R. Role of UV light in photodamage, skin aging, and skin cancer: importance of photoprotection. Am. J. Clin. Dermatol. 10, 19–24 (2009).

    PubMed  Google Scholar 

  • 18.

    Kawano, F., Shi, F. & Yazawa, M. Optogenetics: switching with red and blue. Nat. Chem. Biol. 13, 573–574 (2017).

    CAS  PubMed  Google Scholar 

  • 19.

    Pichon, X. et al. RNA binding protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci. 13, 294–304 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Abil, Z., Denard, C. A. & Zhao, H. Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA. J. Biol. Eng. 8, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Weber, A. M. et al. A blue light receptor that mediates RNA binding and translational regulation. Nat. Chem. Biol. 15, 1085–1092 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Yamada, M., Nagasaki, S. C., Ozawa, T. & Imayoshi, I. Light-mediated control of gene expression in mammalian cells. Neurosci. Res. 152, 66–77 (2020).

    CAS  PubMed  Google Scholar 

  • 23.

    Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Xu, X. et al. A single-component optogenetic system allows stringent switch of gene expression in yeast cells. ACS Synth. Biol. 7, 2045–2053 (2018).

    CAS  PubMed  Google Scholar 

  • 25.

    Chen, X. et al. An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells. Cell Res. 26, 854–857 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    CAS  PubMed  Google Scholar 

  • 27.

    Li, X. et al. A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Res. 48, e33 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Motta-Mena, L. B. et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10, 196–202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Chen, X. et al. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light. Nucleic Acids Res. 44, 2677–2690 (2016).

    PubMed  Google Scholar 

  • 30.

    Graille, M. et al. Activation of the LicT transcriptional antiterminator involves a domain swing/lock mechanism provoking massive structural changes. J. Biol. Chem. 280, 14780–14789 (2005).

    CAS  PubMed  Google Scholar 

  • 31.

    Zoltowski, B. D. et al. Conformational switching in the fungal light sensor Vivid. Science 316, 1054–1057 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    van Tilbeurgh, H., Le Coq, D. & Declerck, N. Crystal structure of an activated form of the PTS regulation domain from the LicT transcriptional antiterminator. EMBO J. 20, 3789–3799 (2001).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Lukinavicius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013).

    CAS  PubMed  Google Scholar 

  • 34.

    Mie, M., Naoki, T., Uchida, K. & Kobatake, E. Development of a split SNAP-tag protein complementation assay for visualization of protein-protein interactions in living cells. Analyst 137, 4760–4765 (2012).

    CAS  PubMed  Google Scholar 

  • 35.

    Yang, Y., Declerck, N., Manival, X., Aymerich, S. & Kochoyan, M. Solution structure of the LicT–RNA antitermination complex: CAT clamping RAT. EMBO J. 21, 1987–1997 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Wei, H. & Wang, Z. Engineering RNA-binding proteins with diverse activities. Wiley Interdiscip. Rev. RNA 6, 597–613 (2015).

    CAS  PubMed  Google Scholar 

  • 37.

    Zoltowski, B. D., Vaccaro, B. & Crane, B. R. Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5, 827–834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat. Biotechnol. 37, 1287–1293 (2019).

    CAS  PubMed  Google Scholar 

  • 39.

    Zhao, Y. Y. et al. Expanding RNA binding specificity and affinity of engineered PUF domains. Nucleic Acids Res. 46, 4771–4782 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Gross, J. D., Matsuo, H., Fletcher, M., Sachs, A. B. & Wagner, G. Interactions of the eukaryotic translation initiation factor eIF4E. Cold Spring Harb. Symp. Quant. Biol. 66, 397–402 (2001).

    CAS  PubMed  Google Scholar 

  • 41.

    Ulyanova, V., Vershinina, V. & Ilinskaya, O. Barnase and binase: twins with distinct fates. FEBS J. 278, 3633–3643 (2011).

    CAS  PubMed  Google Scholar 

  • 42.

    Choudhury, R., Tsai, Y. S., Dominguez, D., Wang, Y. & Wang, Z. Engineering RNA endonucleases with customized sequence specificities. Nat. Commun. 3, 1147 (2012).

    PubMed  Google Scholar 

  • 43.

    Knott, G. J. & Doudna, J. A. CRISPR–Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    CAS  PubMed  Google Scholar 

  • 45.

    Nihongaki, Y. et al. CRISPR–Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat. Methods 14, 963–966 (2017).

    CAS  PubMed  Google Scholar 

  • 46.

    Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    CAS  Google Scholar 

  • 47.

    Ma, H. et al. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat. Methods 15, 928–931 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Qin, P. et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR–Cas9. Nat. Commun. 8, 14725 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Ma, H. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528–530 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Shao, S. et al. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res. 44, e86 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Bubeck, F. et al. Engineered anti-CRISPR proteins for optogenetic control of CRISPR–Cas9. Nat. Methods 15, 924–927 (2018).

    CAS  PubMed  Google Scholar 

  • 53.

    Nihongaki, Y., Yamamoto, S., Kawano, F., Suzuki, H. & Sato, M. CRISPR–Cas9-based photoactivatable transcription system. Chem. Biol. 22, 169–174 (2015).

    CAS  PubMed  Google Scholar 

  • 54.

    Nihongaki, Y., Otabe, T., Ueda, Y. & Sato, M. A split CRISPR–Cpf1 platform for inducible genome editing and gene activation. Nat. Chem. Biol. 15, 882–888 (2019).

    CAS  PubMed  Google Scholar 

  • 55.

    Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32, 1909–1918 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Polstein, L. R. & Gersbach, C. A. A light-inducible CRISPR–Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198–200 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR–Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    CAS  PubMed  Google Scholar 

  • 58.

    Richter, F. et al. Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res. 44, 10003–10014 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Zhou, X. X. et al. A single-chain photoswitchable CRISPR–Cas9 architecture for light-inducible gene editing and transcription. ACS Chem. Biol. 13, 443–448 (2018).

    CAS  PubMed  Google Scholar 

  • 60.

    Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Boersma, S. et al. Multi-color single-molecule imaging uncovers extensive heterogeneity in mRNA decoding. Cell 178, 458–472 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Song, W., Strack, R. L. & Jaffrey, S. R. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat. Methods 10, 873–875 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Paige, J. S., Nguyen-Duc, T., Song, W. & Jaffrey, S. R. Fluorescence imaging of cellular metabolites with RNA. Science 335, 1194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Liu, Y. et al. Directing cellular information flow via CRISPR signal conductors. Nat. Methods 13, 938–944 (2016).

    CAS  PubMed  Google Scholar 

  • 65.

    Xu, X. & Qi, L. S. A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431, 34–47 (2019).

    CAS  PubMed  Google Scholar 

  • 66.

    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

    Related Posts
    New experimental method IR-DOSY reveals molecular structure and size thumbnail

    New experimental method IR-DOSY reveals molecular structure and size

    IR-DOSY spectra of a mixture of acetone and dialanine, showing which IR peak belongs to which compound. Credit: HIMS Researchers at the University of Amsterdam have developed a novel approach to infrared spectroscopy that enables simultaneous characterization of molecular structure and size. Called Infrared Diffusion-Ordered Spectroscopy (IR-DOSY), the method nicely separates molecules with different sizes
    Read More
    Webinar: Direct to Device Satellite Services – Register Now thumbnail

    Webinar: Direct to Device Satellite Services – Register Now

    The United States has become the first country to set ground rules for allowing satellite operators to use radio waves from terrestrial mobile partners to keep smartphone users connected beyond cell towers. The regulatory framework marks a key milestone for a fledgling industry seeking to provide connectivity directly to mass-market devices from space, either via
    Read More
    Najhorší deň v roku. Prečo Modrý pondelok pripadá na dnešok a čo s tým robiť thumbnail

    Najhorší deň v roku. Prečo Modrý pondelok pripadá na dnešok a čo s tým robiť

    Písal sa rok 2005, keď britský psychológ Cliff Arnall prišiel s unikátnym vzorcom, podľa ktorého spočítal, že najdepresívnejším dňom v roku je tretí januárový pondelok. Jeho vzorec demonštruje, že práve v tento deň si ľudia začnú zúfať, že ešte nezhodili všetky kilá, čo cez Vianoce pribrali. Tiež im dôjde, koľko budú musieť splácať za dlhy,…
    Read More
    Why chickens probably crossed the Silk Road thumbnail

    Why chickens probably crossed the Silk Road

    The mystery of what came first, the chicken or the egg has generally been solved–it was the egg. However, some questions remain about how well chickens were dispersed in the ancient world, as some wild bird bones have been misidentified as domesticated chicken bones.  With the help of new technology, a recent analysis of eggshell
    Read More
    Index Of News
    Total
    0
    Share