Mechanism that helps immune cells to invade tissues

To fight infections and heal injuries, immune cells need to enter tissue. They also need to invade tumors to fight them from within. Scientists have now discovered how immune cells protect their sensitive insides as they squeeze between tissue cells. The team lays the foundation for identifying new targets in cancer treatment.

Knowing, when exactly immune cells will try to invade a tumor is difficult. In order to be able to study this cell invasion process in detail, scientists like Professor Daria Siekhaus and her team need something more reliable. That’s why they turn to fruit fly embryos. During the development of these embryos, macrophages, the dominant form of immune cells in the fruit fly, travel from the spot where they are born to the place where they are needed by invading tissue. They do so at a certain time point, enabling scientists to study the process within these tiny transparent animals. With the help of IST Austria’s state-of-the-art Bioimaging Facility, they watch as the macrophages — marked with a green fluorescent protein — push their way into the tissue.

Creating an armor

Which cellular changes are needed for this and which genes trigger such alterations is still largely unknown. With their new study by first authors Vera Belyaeva, Stephanie Wachner, and Attila Gyoergy, the Siekhaus group sheds light on this process, essential in health and disease. “Previously, we found that a specific gene, called Dfos, is enriched in the immune cells and we wondered what it did,” says Siekhaus.

“Now we can prove that it triggers the assembly of actin filaments.” These protein threads are concentrated at the inside of the cell membrane, also known as cell cortex, giving the cell surface stability. The scientists show that through a complex cascade involving different proteins, the actin filaments are made denser and more connected to each other, forming a stable shell. “We hypothesize that this works like a tank, deforming surrounding cells while protecting the immune cell’s nucleus from mechanical pressure as it invades the tissue,” Siekhaus explains. Furthermore, the team was able to show in vivo that missing this actin shell makes it harder for immune cells to infiltrate unless the surrounding tissue is made softer.

Strengthening immune cells to fight cancer

Although a fruit fly and vertebrates such as mice and humans do not have much in common at first glance, there are many similarities in the way their genes function. Working together with Professor Maria Sibilia from the Medical University of Vienna, the researchers at IST Austria found evidence that the vertebrate gene Fos, the equivalent to the fruit fly gene Dfos, activates the same genetic pathways. “We think that the same mechanism we found in the fruit fly also plays a role in vertebrates,” says biologist Daria Siekhaus.

This raises the hope that the group’s findings could help identify new targets for the treatment of cancer. In the field of immuno-oncology, researchers are looking for ways to activate the body’s immune system to attack a tumor. One of the challenges they face, is to enable the immune cells to infiltrate the tumor. “If one could strengthen their protective shell, it could make it easier for them to invade the tumor tissue,” Siekhaus concludes.

Story Source:

Materials provided by Institute of Science and Technology Austria. Note: Content may be edited for style and length.

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
Hubble Detects Water Vapor in Atmosphere of Gliese 9827d thumbnail

Hubble Detects Water Vapor in Atmosphere of Gliese 9827d

Using the Wide Field Camera 3 (WFC3) instrument onboard the NASA/ESA Hubble Space Telescope, astronomers have detected water vapor in the transmission spectrum of the sub-Neptune exoplanet Gliese 9827d. The water detection in the transit spectrum of Gliese 9827d makes it the first water world candidate with an atmospheric water detection consistent with a water-rich
Read More
The Netherlands is more important for sturgeon than previously thought thumbnail

The Netherlands is more important for sturgeon than previously thought

Historical map of sturgeon captures. Credit: Brevé et al, Historical reconstruction of sturgeon (Acipenser spp.) spatiotemporal distribution and causes for their decline in North-Western Europe, Biodiversity and Conservation (2022). The Netherlands is much more important for Rhine sturgeon than previously assumed, especially considering a reintroduction of the species in the river Rhine. Until the 1930s,…
Read More
Hubble sees an outburst from an infant star thumbnail

Hubble sees an outburst from an infant star

NASA/ESA Hubble Space Telescope captured an energetic outburst from an infant star. The star is extremely young and in the earliest phase of formation. The outburst- an incandescent gas jet- is traveling at supersonic speeds. The collision of the jet with material surrounding the star generates shock heat that causes the outburst to glow. The…
Read More
Prepare Your Closets for Fall Like a Goddamned Adult thumbnail

Prepare Your Closets for Fall Like a Goddamned Adult

Photo: tartanparty (Shutterstock)It is time. The seasons have officially turned, the air has gotten that crisp morning edge, and the humidity has left the building. (At least where I live. Sorry, Florida). Which means? It’s time to flip those closets for fall. And we’re not just talking about clothes here. New seasons often call for…
Read More
Key Biden Climate Pollution Metric Is Safe--For Now thumbnail

Key Biden Climate Pollution Metric Is Safe–For Now

CLIMATEWIRE | The Supreme Court on Tuesday declined to take up a fight by Republican-led states over the federal government's method of estimating the costs of climate change, in a win for President Joe Biden's push to address rising emissions. In a short, unexplained order, the justices rejected a challenge led by Missouri Attorney General Andrew
Read More
Index Of News
Total
0
Share