[Technical Notebook] Towards the bio-printing of functional human tissues

Combining 3D printing and tissue engineering, bio-printing has become one of the most promising technologies in the medical field. Research is directed towards the creation of functional tissues for clinical applications.

In recent years, tissue engineering has benefited from rapid advances in the field of additive manufacturing. Indeed, processes based on “bio-printing” techniques have appeared and are gradually becoming widespread in laboratories. They make it possible to create living tissue by adding layers of biomaterials entering into the physiological composition of the tissue that one wishes to reproduce. These biomaterials are implemented in the form of a “bio-ink” which provides the cells with a structure ensuring both their maintenance and their specific positioning in space. Combined with specific culture conditions, this bio-ink is a major asset for guiding cell development and thus generating increasingly complex and differentiated tissues. This new complexity of tissues is precious because it allows them to be increasingly functionalized.

Each human tissue, even the most harmless, fulfills a function in the body. It stems both from the physiological composition of the tissue, but also from its structure. For example, the tissues of bones or teeth can offer great mechanical properties to ensure their function, and those of the skin and other epithelia possess structures that allow protection against external pathogens or against massive water loss. The 3D positioning of the structure of certain cells makes it possible to endow the tissue with specific activities (such as secretion). As technical developments in bio-printing progress and knowledge advances, this field of 3D printing has become a transdisciplinary field, combining tissue engineering, materials science, cell biology and biochemistry. The objective today is to develop fully functional tissues that can be used in the manufacture of 3D printed organs.

1. Operational technologies

Today there are three major bio-printing techniques: inkjet, extrusion and deposition by laser expulsion (fig. 1). Each of these techniques has advantages and disadvantages, related in particular to the resolution obtained, the ability to produce large tissues and the cytotoxicity of the process. Laser deposition is the technique offering the highest resolution (0 to 50 µm, with single cell deposition) without however making it possible to reach objects of physiological size (several centimeters). For its part, the inkjet printing technique has an intermediate resolution (50 to 100 µm). It allows to obtain centimetric objects, that is to say the size of fabrics. Finally, extrusion displays the lowest resolution (around 100 µm) but allows, thanks to the rheology of the bio-inks used, to print living objects of decimetric size.

Fig 1

These technologies have evolved a lot in recent years and manufacturers now provide interesting bio-printers. They have been the basis of numerous proofs of concept produced in the field of tissue engineering. Note, for example, several impressions of complex skin, blood vessels, cartilage or even a retina. Some of the bio-printed tissues have also been implanted in vivo to demonstrate their biological function, but these are still only tissues and not complete organs.

The barrier to the bioprinting of complete functional organs that can be reimplanted remains the vascularization of the bioprinted tissues. Indeed, it would remove two major locks. On the one hand, keeping the printed objects alive throughout the maturation of the organ (which can take several weeks) thanks to the infusion of nutrient medium within the object. On the other hand, the creation of a vascular network with a certain resistance could make possible microsurgery operations allowing the connection of veins or arteries (anastomosis) during implantation.

2. The challenge of cell conservation

In order to produce living and potentially implantable tissues in humans, it is necessary to to include living cells, but above all to keep them alive. They are of course important, because they are the ones that bring functionality and specificity to tissues, either through their own functions or through their positioning. However, bioprinting techniques are processes that can be traumatic for cells and lead to damage of different kinds: lysis, necrosis, apoptosis, senescence, phenotypic drift, deletion, mutation or even loss of physiological function. Thus, it is vital to find a balance between the trauma applied to the cells and the performance of the bio-printing process.

This point of balance is determined on the one hand by the parameters of bio-printing, such as the flow of material, the equipment (shape and diameter of the nozzle), the speed or even the printing resolution, and on the other hand by the rheological properties of the bio-ink. These two factors generate stresses – such as the pressure around the membrane surface – on the cells, causing their possible damage. But it should be noted that the stronger the constraint, the more the cells are at risk of being damaged or traumatized (fig. 2) .

Fig. 2

Constraint can have immediate consequences, such as the lysis of the membranes surrounding the cells and therefore their death, but also so-called programmed consequences. This is particularly the case for apoptosis, programmed and delayed death, but also phenotypic change. This last effect is more insidious since it leads to a change in the functionality of the bio-printed cells which will for example go from a “skin fibroblast” phenotype to a “scar fibroblast” phenotype, whose behaviors will be very different. The effect on the fabric obtained will then be significant and the desired functionalities cannot be obtained. In order to reduce, or even cancel, the risk of cell damage during their use in bio-printing, it is important to understand the formation of stress fields around the cells. This understanding goes first and foremost through an in-depth analysis of the rheological behavior of bio-inks. printing, bio-inks are hydrogels with shear strengths (viscosity) that are more or less significant. Commonly, bio-inks are more or less thick pastes and this is the whole issue of cell damage. To understand the link between viscosity, stress and risk of cell damage within bio-printing techniques, it suffices to make the analogy with people entering a hallway. The latter represents the deposition or ejection nozzles, the people represent the cells and the environment corresponds to the bio-ink. If we take the example of a corridor

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
Using “Hairy Nanocrystals” To Decrease Side Effects of Cancer Drugs thumbnail

Using “Hairy Nanocrystals” To Decrease Side Effects of Cancer Drugs

Schematic of cellulose nanocrystals capturing chemotherapeutic drugs with their engineered charged, hairy extensions. Credit: Terasaki Institute for Biomedical Innovation Scientists develop plant-based ‘hairy nanocrystals’ to remove excess chemotherapy drugs from the blood. Millions of people around the globe are affected by cancer each year; more than 39% of men and women are diagnosed with cancer…
Read More
How DNA is preserved in archaeological sediments for thousands of years thumbnail

How DNA is preserved in archaeological sediments for thousands of years

Sampling of an undisturbed block of impregnated sediment for ancient DNA analyses. Credit: MPI f. Evolutionary Anthropology Sediments in which archaeological finds are embedded have long been regarded by most archaeologists as unimportant by-products of excavations. However, in recent years it has been shown that sediments can contain ancient biomolecules, including DNA. "The retrieval of…
Read More
How COVID-19 Variants Could Outsmart Vaccines thumbnail

How COVID-19 Variants Could Outsmart Vaccines

This August, the CDC reported that the highly-infectious delta variant may reduce efficacy of Pfizer-BioNTech and Moderna’s mRNA vaccines from from roughly 91 to 66 percent. And while the deta variant continues to account for the overwhelming majority of cases in the U.S., some researchers claim that the lambda and mu variants could further dampen…
Read More
Upcycling hard-to-recycle plastics into useful material thumbnail

Upcycling hard-to-recycle plastics into useful material

Glass fiber-reinforced plastic (GFRP) is a versatile and durable material used in various applications, such as aircraft parts and windmill blades. Its increasing use has triggered an urgent need for proper end-of-life management strategies. Due to its robust nature, it’s challenging to dispose of, and it often ends up in landfills once it reaches the
Read More
ANA、元エアアジア仕様最後のA320離日 180席仕様のJA03VA thumbnail

ANA、元エアアジア仕様最後のA320離日 180席仕様のJA03VA

By Tadayuki YOSHIKAWA  ANAホールディングス(ANAHD、9202)傘下の全日本空輸(ANA/NH)が運航していたエアバスA320型機のうち、同じく傘下でLCCのバニラエア(ピーチ・アビエーションと統合)の3号機として運航していた機体(A320ceo、登録記号JA03VA)が1月14日午後に羽田空港からフェリーフライトのNH9432便として日本を離れ、ソウル(仁川)経由でロシア・シベリアのノボシビルスクへ向かった。ANAグループが運航するA320のうち、ANA本体のものはすべて新型エンジンを搭載するA320neoとなり、従来型のA320ceoはピーチ・アビエーション(APJ/MM)の機体のみとなった。 羽田空港に駐機中のANAのA320 JA03VA=21年12月29日 PHOTO: Tadayuki YOSHIKAWA/Aviation Wire  バニラは同じくANAHD傘下のLCCであるピーチと2019年11月に統合を完了。1クラス180席仕様のA320を15機運航していたが、このうち初期導入のJA01VAからJA03VAまでの3機はピーチへ移管されず、180席のまま「32G」と呼ばれる客室仕様で、ANAが2020年から主に単独路線で運航した。  3機はANAHDがリース導入し、バニラが運航。いずれもANAHDが合弁を解消したエアアジア・ジャパン用の機材として発注していたため、シートにロゴが入っていないことなどを除くとエアアジア仕様のままで、翼端に燃費を改善する「シャークレット」を装備していた。薄型シートが主流の中、肉厚なシートは異彩を放っていたが、シートピッチが狭いことがFSC(フルサービス航空会社)の機材としては難点とも言えた。  JA01VAは発注途中でバニラ機になったため、塗装が間に合わず2013年11月14日に白い塗装で成田空港へ飛来。国内で黄色と白のツートンカラーに塗装された。一方、JA02VAとJA03VAはツートンには塗装されず、白地にロゴなどを描くだけのデザインになった。バニラはJA04VAから自社で選定したシートや内装の機材になった。  ANAの国内線用A320は2クラス166席仕様だったが、座席数を統一するためには配線などを変更する必要があり、改修には2年程度かかることから、3機とも180席仕様のまま運航を続けた。 奄美を出発するバニラの成田行きJW824便最終便=19年8月31日 PHOTO: Yusuke KOHASE/Aviation Wire  JA03VAは2014年1月に引き渡された機体で、航空機の位置情報を提供するウェブサイト「フライトレーダー24(Flightradar24)」によると、バニラ時代の最終便は2019年10月23日の台北(桃園)発成田行きJW100便。ANAでは2020年2月6日の羽田発徳島行きNH285便が初便となり、2021年5月30日の八丈島発羽田行きNH1892便が最終便となった。バニラでは、単独路線だった成田-奄美大島線の同社運航最終便となった2019年8月31日の成田行きJW824便にも使用された。  2013年11月に引き渡されたJA01VAの最終便は、2021年3月18日の八丈島発羽田行きNH1892便、2013年12月引き渡しのJA02VAは同月8日の同じ便で退役しており、日本を離れたのはJA01VAが同年11月13日、JA02VAは12月23日だった。  JA01VAは羽田からソウル、ノボシビルスク、ロシア・モスクワのドモジェドボ国際空港経由でフランスのタルブ・ルルド。ピレネー空港へフェリー(回航)された。JA02VAは、米LCCのアレジアント航空(AAY/G4)の塗装で羽田からアンカレッジ経由で米フロリダ州のメルボルン国際空港へ向かった。  ANA本体が運航するA320ファミリーは、国際線機材のA320neo(2クラス146席)と、国内線機材のA321ceoとA321neo(ともに2クラス194席)となる。新型コロナウイルス感染症(COVID-19)の影響で、A320neoは国内線に投入する機会が増えている。 *写真は10枚。羽田空港に駐機中のANAのA320 JA03VA=21年12月29日 PHOTO: Tadayuki YOSHIKAWA/Aviation Wire 奄美を離陸するバニラの成田行きJW824便最終便=19年8月31日 PHOTO: Yusuke KOHASE/Aviation Wire 羽田空港の407番スポットで出発を待つANAのA320 JA03VA=20年10月5日 PHOTO: Tadayuki YOSHIKAWA/Aviation Wire 羽田空港の407番スポットで出発を待つANAのA320 JA03VA=20年10月5日 PHOTO: Tadayuki YOSHIKAWA/Aviation Wire エアアジア・ジャパン仕様のシートのまま運航を続けたANAのA320 JA03VA=20年10月5日 PHOTO: Tadayuki YOSHIKAWA/Aviation Wire 「32G」と書かれたANAのA320 JA03VAの安全のしおり=20年10月5日 PHOTO:…
Read More
Wayne Hasson Honored By The Sea of Change Foundation thumbnail

Wayne Hasson Honored By The Sea of Change Foundation

Captain Wayne Hasson has been posthumously honored with the Lifetime Explorer Award by the Sea of Change Foundation. Captain Hasson had an illustrious career, which included stints at the first captain of the Cayman Aggressor, one of the first dive liveaboards, as well as serving as a board member of the Sea of Change Foundation.…
Read More
Index Of News
Total
0
Share