Artificial Intelligence Computing Using Networks of Tiny Nanomagnets

Human Brain Artificial Intelligence AI Illustration

Researchers have demonstrated that artificial intelligence may be performed using small nanomagnets that interact like neurons in the brain.

Researchers have shown it is possible to perform artificial intelligence using tiny nanomagnets that interact like neurons in the brain.

The new technology, developed by a team led by Imperial College London researchers, could significantly reduce the energy cost of artificial intelligence (AI), which is currently doubling globally every 3.5 months.

In a paper published today (May 5, 2022) in the journal Nature Nanotechnology, the international team has produced the first proof that networks of nanomagnets can be used to perform AI-like processing. The researchers showed nanomagnets can be used for ‘time-series prediction’ tasks, such as predicting and regulating insulin levels in diabetic patients.

Artificial intelligence that uses ‘neural networks’ aims to replicate the way parts of the brain work, where neurons talk to each other to process and retain information. A lot of the maths used to power neural networks was originally invented by physicists to describe the way magnets interact, but at the time it was too difficult to use magnets directly as researchers didn’t know how to put data in and get information out.

Instead, software run on traditional silicon-based computers was used to simulate the magnet interactions, in turn simulating the brain. Now, the team have been able to use the magnets themselves to process and store data – cutting out the middleman of the software simulation and potentially offering enormous energy savings.

Nanomagnetic states

Nanomagnets can come in various ‘states’, depending on their direction. Applying a magnetic field to a network of nanomagnets changes the state of the magnets based on the properties of the input field, but also on the states of surrounding magnets.

The team, led by Imperial Department of Physics researchers, were then able to design a technique to count the number of magnets in each state once the field has passed through, giving the ‘answer’.

Co-first author of the study Dr. Jack Gartside said: “We’ve been trying to crack the problem of how to input data, ask a question, and get an answer out of magnetic computing for a long time. Now we’ve proven it can be done, it paves the way for getting rid of the computer software that does the energy-intensive simulation.”

Co-first author Kilian Stenning added: “How the magnets interact gives us all the information we need; the laws of physics themselves become the computer.”

Team leader Dr. Will Branford said: “It has been a long-term goal to realize computer hardware inspired by the software algorithms of Sherrington and Kirkpatrick. It was not possible using the spins on atoms in conventional magnets, but by scaling up the spins into nanopatterned arrays we have been able to achieve the necessary control and readout.”

Slashing energy cost

AI is now used in a range of contexts, from voice recognition to self-driving cars. But training AI to do even relatively simple tasks can take huge amounts of energy. For example, training AI to solve a Rubik’s cube took the energy equivalent of two nuclear power stations running for an hour.

Much of the energy used to achieve this in conventional, silicon-chip computers is wasted in inefficient transport of electrons during processing and memory storage. Nanomagnets however don’t rely on the physical transport of particles like electrons, but instead process and transfer information in the form of a ‘magnon’ wave, where each magnet affects the state of neighboring magnets.

This means much less energy is lost, and that the processing and storage of information can be done together, rather than being separate processes as in conventional computers. This innovation could make nanomagnetic computing up to 100,000 times more efficient than conventional computing.

AI at the edge

The team will next teach the system using real-world data, such as ECG signals, and hope to make it into a real computing device. Eventually, magnetic systems could be integrated into conventional computers to improve energy efficiency for intense processing tasks.

Their energy efficiency also means they could feasibly be powered by renewable energy, and used to do ‘AI at the edge’ – processing the data where it is being collected, such as weather stations in Antarctica, rather than sending it back to large data centers.

It also means they could be used on wearable devices to process biometric data on the body, such as predicting and regulating insulin levels for diabetic people or detecting abnormal heartbeats.

Reference: “Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting” by Jack C. Gartside, Kilian D. Stenning, Alex Vanstone, Holly H. Holder, Daan M. Arroo, Troy Dion, Francesco Caravelli, Hidekazu Kurebayashi and Will R. Branford, 5 May 2022, Nature Nanotechnology.
DOI: 10.1038/s41565-022-01091-7

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
Bilim İnsanları Bir Süper Bilgisayar Kullanarak 100 Bin Yeni RNA Virüsü Keşfetti: İçlerinde Yeni COVID'ler de Var thumbnail

Bilim İnsanları Bir Süper Bilgisayar Kullanarak 100 Bin Yeni RNA Virüsü Keşfetti: İçlerinde Yeni COVID’ler de Var

Kanada'daki British Columbia Üniversitesi araştırmacıları bir süper bilgisayar yardımıyla 100 bin yeni RNA virüsü keşfetti. Bu keşif sonrası bilinen RNA virüs sayısı 10 katına çıktı. Araştırmacılar virüslü örnekleri nerelerden aldıkları ile ilgili bir harita paylaştı. Son zamanlarda Corona virüsüyle birlikte hastalık ve virüslerden günlük hayatımızda çok daha fazla bahsetmeye başladık. Korkarak söylemeliyiz ki ilerleyen günlerde…
Read More
La sixième extinction de masse a déjà commencé thumbnail

La sixième extinction de masse a déjà commencé

La Liste rouge de l'Union internationale pour la conservation de la nature (UICN) recense 897 espèces éteintes depuis l'an 1500, soit 0,04 % des espèces connues de la surface de notre Terre. Mal compris par certains, ce chiffre est parfois utilisé pour nier qu'une crise de la biodiversité est en cours. Pourtant, les experts en…
Read More
FDA、150万円で1機貸切遊覧チャーター 2月に1組限定、小牧発着セミオーダー thumbnail

FDA、150万円で1機貸切遊覧チャーター 2月に1組限定、小牧発着セミオーダー

 フジドリームエアラインズ(FDA/JH)は1月13日、県営名古屋空港(小牧)を発着する「セミオーダー遊覧チャーター」を2月28日に実施すると発表した。同社機を1機まるごと貸し切るもので1組限定で販売し、最大70人まで搭乗できる。旅行代金は150万円から。 1機まるごと貸し切る「セミオーダー遊覧チャーター」を実施するFDA=PHOTO: Tadayuki YOSHIKAWA/Aviation Wire  セミオーダー遊覧チャーターは1人での利用のほか、結婚式やパーティー、社員旅行など参加者の用途に応じて利用できる。飛行時間は約1時間。機材はエンブラエル170(E170)型機かE175となる。  遊覧飛行のルートは、「山」「海」「陸」をテーマに3つのコースを用意。「山」をテーマにしたルートは富士山周遊コースで、通常よりも低い高度で飛行し、日本アルプスを眼下に眺めながら富士山を満喫できる。  「海」をテーマにしたルートは伊勢湾周遊コースで、養老山地や鈴鹿山脈を眺めながら伊勢湾を通り、志摩半島の景色が楽しめる。  「陸」をテーマにしたルートは名古屋市街地周遊コースで、濃尾平野や木曽三川を眺めながら名古屋港、名古屋城、名古屋駅、中部空港(セントレア)などを巡る。  フライトのほか、オリジナルの搭乗証明書の用意と機体前での記念撮影は無料オプションとして選択できる。  有料オプションプランも5つ用意し、コックピット見学や遊覧飛行中の機内アナウンス体験、機体への寄せ書きなどが選べる。寄せ書きは翌日以降も残して運航するという。  申し込みは1月24日正午までで、同社の特設ページで受け付ける。 関連リンクあなただけのトクベツな空体験 SEMI ORDER CHARTER(FDA)フジドリームエアラインズ ・FDA、乗り放題・ミステリーツアーで需要喚起 日帰りプランも(22年1月6日) ・FDA、乗り放題プラン販売 1日8区間搭乗、宿泊込み(21年12月6日) ・FDA、静岡-新千歳5年ぶり再開へ 10月冬ダイヤから(21年9月30日)
Read More
Index Of News
Total
0
Share