1st image of our galaxy’s ‘black hole heart’ unveiled

The Milky Way and the location of its central black hole as viewed from the Atacama Large Millimeter/submillimeter Array.

The Milky Way and the location of its central black hole as viewed from the Atacama Large Millimeter/submillimeter Array.
(Image credit: ESO/José Francisco Salgado (josefrancisco.org), EHT Collaboration)

Astronomers have captured the first ever image of the colossal black hole at the center of our galaxy, providing the first direct evidence of the cosmic giant’s existence.

Located 26,000 light-years away, Sagittarius Ais a gargantuan tear in space-time that is four million times the mass of our sun and 40 million miles (60 million kilometers) across. The image was captured by the Event Horizon Telescope (EHT), a network of eight synchronized radio telescopes placed in various locations around the world. 

As not even light is able to escape the powerful gravitational pull of a black hole, it’s impossible to see Sagittarius Aitself except as the silhouette of a ring of fuzzy, warped light. This halo comes from the superheated, glowing matter swirling around the entrance to the cosmic monster’s maw at close to the speed of light. Once the slowly stripped and shredded plasma plunges over the black hole’s precipice, or event horizon, it is lost inside forever.

Related: The universe may have been filled with supermassive black holes at the dawn of time

“Our results are the strongest evidence to date that a black hole resides at the centre of our galaxy,” Ziri Younsi, an astrophysicist at University College London and an EHT collaborator, said in a statement. “This black hole is the glue that holds the galaxy together. It is key to our understanding of how the Milky Way formed and will evolve in the future.”

Scientists have long thought that an enormous supermassive black hole must lurk at the center of our galaxy, its gravity tethering the Milky Way’s dust, gas, stars and planets in a loose orbit about it and causing stars closeby to circle around it rapidly. This new observation, which shows light being bent around the space-time-warping behemoth, puts their suspicions beyond all doubt.

“We were stunned by how well the ring size agreed with predictions from Einstein’s theory of general relativity,” Geoffrey Bower, an EHT collaborator and astronomer at Academia Sinica, Taipei, said in a statement. “These unprecedented observations have greatly improved our understanding of what happens at the very center of our galaxy and offer new insights on how these giant black holes interact with their surroundings.”

Einstein’s theory of general relativity describes how massive objects can warp the fabric of the universe, called space-time. Gravity, Einstein discovered, isn’t produced by an unseen force, but is simply our experience of space-time curving and distorting in the presence of matter and energy. Black holes are points in space where this warping effect becomes so strong that Einstein’s equations break down, causing not just all nearby matter but all nearby light to be sucked inside.

The Event Horizon Telescope has captured the first image of Sgr A*, the supermassive black hole at the center of our galaxy.

The Event Horizon Telescope has captured the first image of Sgr A*, the supermassive black hole at the center of our galaxy. (Image credit: EHT Collaboration)

To build a black hole, you have to start with a large star — one with a mass roughly five to 10 times that of the sun. As larger stars approach the ends of their lives, they start to fuse heavier and heavier elements, such as silicon or magnesium, inside their burning cores. But once this fusion process begins forming iron, the star is on a path to violent self-destruction. Iron takes in more energy to fuse than it gives out, causing the star to lose its ability to push out against the immense gravitational forces generated by its enormous mass. It collapses in on itself, packing first its core, and later all the matter close to it, into a point of infinitesimal dimensions and infinite density — a singularity. The star becomes a black hole, and beyond a boundary called the event horizon, nothing — not even light — can escape its gravitational pull.

Exactly how black holes may grow to become supermassive in scale is still a mystery to scientists, although observations of the early universe suggest they could balloon to their enormous sizes by snacking on dense clouds of gas and merging with other black holes.

The EHT captured the image, alongside the image of another supermassive black hole at the center of the M87 galaxy, back in 2017. The image of the M87 black hole was released in 2019, Live Science previously reported, but it took two more years of data analysis before the Milky Way one was ready.

Part of the reason behind the delay is the vastly different sizes of the two supermassive black holes, which in turn affects the speeds that their plasma clouds whirl around their centers. The M87 black hole (M87*) is roughly a thousand times bigger than Sagittarius A*, weighing in at a jaw-dropping 6.5 billion times the mass of our sun, and its hot plasma takes days or even weeks to orbit it. The plasma of Sagittarius A*, by contrast, can whip around it in mere minutes.

“This means the brightness and pattern of the gas around Sgr Awas changing rapidly as the EHT Collaboration was observing it — a bit like trying to take a clear picture of a puppy quickly chasing its tail,” Chi-kwan Chan, an EHT collaborator and astrophysicist at the University of Arizona, said in a statement.

The imaging process was made even more challenging by the Earth’s location at the edge of the Milky Way, meaning the researchers had to use a supercomputer to filter out interference from the countless stars, gas and dust clouds strewn between us and Saggitarius A*. The final result is an image which looks very similar to the 2019 snapshot of M87*, even though the two black holes are themselves vastly different in scale. This is something the researchers attribute to the startling and persisting accuracy of Einstein’s general relativity equations.

“We have two completely different types of galaxies and two very different black hole masses, but close to the edge of these black holes they look amazingly similar,” Sera Markoff, an EHT collaborator and astrophysicist at the University of Amsterdam in the Netherlands, said in a statement. “This tells us that general relativity governs these objects up close, and any differences we see further away must be due to differences in the material that surrounds the black holes.”

Detailed analysis of the image has already enabled scientists to make some fascinating observations into our black hole’s nature. First, it’s wonky, sitting at a 30-degree angle to the rest of the galactic disk. It also appears to be dormant, making it unlike other black holes such as M87*, which suck in burning-hot material from nearby gas clouds or stars before slingshotting it back into space at near light speeds.

The scientists will follow up with further analysis of both this image and the one of M87*, alongside capturing new and improved images. More images won’t just enable better comparisons between the black holes, but will also provide improved detail, allowing scientists to see how the same black holes change over time and what goes on around their event horizons. This could not only give us a better understanding of how our universe formed, but also help in the search for hints as to where Einstein’s equations could give way to undiscovered physics.

The researchers published their results in a series of papers in the journal The Astrophysical Journal Letters.

Originally published on Live Science.

Ben Turner

Ben Turner is a U.K. based staff writer at Live Science. He covers physics and astronomy, among other topics like tech and climate change. He graduated from University College London with a degree in particle physics before training as a journalist. When he’s not writing, Ben enjoys reading literature, playing the guitar and embarrassing himself with chess.

Note: This article have been indexed to our site. We do not claim legitimacy, ownership or copyright of any of the content above. To see the article at original source Click Here

Related Posts
Puns, Pranks and Puerile Humor: Silly Stories about Serious Science thumbnail

Puns, Pranks and Puerile Humor: Silly Stories about Serious Science

February 1, 20244 min readSeventy-one essays of science trivia, from duck penises to hangover mythsBy Chuck Wendig Credit: London LaddEdited by Amy BradyNONFICTIONHow to Win Friends and Influence Fungi: Collected Quirks of Science, Tech, Engineering, and Math from Nerd Nite edited by Chris Balakrishnan and Matt Wasowski St. Martin's Press, 2024 ($30)On supporting science journalismIf
Read More
JAL, Norwegian mackerel imported for the first time in Japan Offering a fluffy, thick texture, supermarket and in-flight meals thumbnail

JAL, Norwegian mackerel imported for the first time in Japan Offering a fluffy, thick texture, supermarket and in-flight meals

By Yusuke KOHASE  日本航空(JAL/JL、9201)とJALUX(ジャルックス、2729)、ノルウェー水産物審議会(NSC)の3者は9月24日、ノルウェー産の生サバの輸入を開始した。通常は冷凍状態で輸送されるが、生の状態で輸入することで肉厚のふわっとした食感を味わえるようになる。日本でノルウェー産生サバを輸入するのは初めてで、首都圏の大手スーパーで販売するほか、機内食でも提供する。漁獲の最盛期を迎える11月ごろまでに、20トン程度の輸入を見込む。羽田に到着したJALのヘルシンキ発JL48便から降ろされるノルウェー産生サバ「サバヌーヴォー」=21年9月24日 PHOTO: Yusuke KOHASE/Aviation Wire —記事の概要— ・JALUX社員が目利きする「サバヌーヴォー」 ・「日本では味わえない衝撃的なおいしさ」 JALUX社員が目利きする「サバヌーヴォー」  ノルウェー産のサバは、脂肪が乗る9月下旬から11月初旬に最盛期を迎える。通常のサバは1尾あたりの重量が200から600グラム、脂肪率が20-30%で、このうち重量が500グラム以上、脂肪率が30%以上のものを「サバヌーヴォー」と命名し、生鮮状態で日本に空輸する。  仏産ワインのボジョレー・ヌーヴォー(ボージョレ・ヌーボー)を模して命名したサバヌーヴォーは、ノルウェーにいるJALUXの社員が選別。ノルウェー近海で水揚げされたサバを工場で氷詰めにし、ノルウェーの首都・オスロからフィンランドの首都・ヘルシンキまで約1000キロを陸送する。ヘルシンキからはJALが定期運航する羽田行きJL48便で空輸し、水揚げから60時間程度で日本の食卓に届ける。  サバは鮮度が落ちやすく、俗に「足がはやい魚」とも言われる。着荷時の庫内温度は0度から2度、サバの芯温をマイナス1度からプラス1度にすることにより、鮮度を保った状態で輸送する。  9月24日からスーパーでの販売を開始し、首都圏を中心に営業するロピア(本店・川崎市)の関東全店舗で取り扱うほか、次回入荷分からはクイーンズ伊勢丹でも販売。白金高輪店と品川店のほか、都内の複数店舗で取り扱う。  このほか、JALの羽田発着便で国内線ファーストクラスの朝食としても提供する。9月21日から30日までは着便、10月21日から31日までは発便で用意し、それぞれ和食メニューの「台の物」で塩焼きとして提供する。また、サバヌーヴォーを使用した焼きサバ寿司などの加工品も開発中で、JALUXが運営する空港店舗「BLUE SKY」やオンラインショップでの販売を予定する。日本初となったノルウェー産生サバ「サバヌーヴォー」=21年9月24日 PHOTO: Yusuke KOHASE/Aviation Wire 生サバ「サバヌーヴォー」の塩焼きを提供するJAL国内線ファーストクラスの機内食=21年9月24日 PHOTO: Yusuke KOHASE/Aviation Wire 「日本では味わえない衝撃的なおいしさ」 ノルウェー産生サバ「サバヌーヴォー」の品質に自信を見せるJALUXの丸川副社長(左から2人目)とNSCのクアルハイム氏(右から1人目)=21年9月24日 PHOTO: Yusuke KOHASE/Aviation Wire  輸入初日となった24日は、JALのヘルシンキ発羽田行きJL48便(ボーイング787-9型機、登録記号JA875J)で30箱、300キロ分の生サバを輸入。到着後、羽田の貨物上屋で税関職員が生サバを検査した。  JALUXの丸川潔副社長はサバヌーヴォーについて、脂が乗りふわっとした食感を「日本では味わえない衝撃的なおいしさ」と表現。JALグループは航空便と商社を持つことから「ほかの誰にも達成できない。私たちだけが達成できる」と成功に自信をのぞかせた。9月下旬から11月初旬がサバ漁の最盛期となることから「スペシャルな品質をお届けし、秋の味覚として定着させたい」と語った。  ノルウェー産のサバは日本が最大の輸出先で、年間12万トンを日本向けに出荷している。輸出額ベースでも日本が首位で、1995年以降トップを維持している。1995年の輸出額は115億円、最も多かった2005年は206億円だった。近年は韓国や中国向けの輸出が増えていることから、2020年の輸出額は1995年と同水準の115億円だった。  これまでは水揚げされたサバはすべて冷凍で輸入し、船便を活用していた。丸川副社長によると、最盛期に突入した9月に水揚げされたものでも、11月に到着していたという。  ノルウェーが生サバの輸出を始めたのは2017年で、全体の2-5%程度。残りの9割以上が従来の冷凍品だという。また輸出先はデンマークとスウェーデン、イタリアの欧州3カ国のみで、現段階では日本が最も遠い輸出先となる。NSCで日本・韓国担当ディレクターを務めるヨハン・クアルハイム氏は、日本への生サバ輸出開始について「ノルウェーの水産業界にとって大きな一歩だ」と喜びをあらわにした。  生サバの輸入開始により、従来の加熱調理のほか、刺身などの生食利用も期待される。今回のサバヌーヴォー事業を進めたJALUX水産部水産第1課の増田仁課長は、生食について「耐えられる鮮度だが(寄生虫の)アニサキスがいる可能性がある」とし、専門家による調理が必要だとした。増田課長によると塩焼きのほか、醤油の煮付けや塩レモンのグリルなどが、ふわっとした食感をより楽しめるという。初出荷されたノルウェー産生サバ「サバヌーヴォー」を積んで羽田に到着するJALのヘルシンキ発JL48便=21年9月24日 PHOTO: Yusuke KOHASE/Aviation Wire 羽田に到着したJALのヘルシンキ発JL48便から降ろされるノルウェー産生サバ「サバヌーヴォー」=21年9月24日 PHOTO: Yusuke KOHASE/Aviation Wire 羽田に到着したノルウェー産生サバ「サバヌーヴォー」を貨物上屋へ運ぶJALのグラハンスタッフ=21年9月24日 PHOTO: Yusuke KOHASE/Aviation Wire 羽田に到着したノルウェー産生サバ「サバヌーヴォー」を検品する税関職員=21年9月24日 PHOTO:…
Read More
Ultrasounds for endangered abalone mollusks thumbnail

Ultrasounds for endangered abalone mollusks

The world's abalone are threatened, endangered or otherwise vulnerable in nearly every corner of the planet. While captive breeding efforts are underway for some species, these giant sea snails are notoriously difficult to spawn. If only we could wave a magic wand to know when abalone are ready to reproduce, without even touching them. Scientists…
Read More
New Research Reveals Dangerous Consequences of Stopping Opioid Treatment for Chronic Pain thumbnail

New Research Reveals Dangerous Consequences of Stopping Opioid Treatment for Chronic Pain

Opioid addiction is a serious public health concern that affects millions of people worldwide. It is characterized by the compulsive use of opioids despite negative consequences, such as health problems, relationship troubles, and financial difficulties. The addiction can be caused by a variety of factors, including chronic pain, mental health issues, and exposure to opioid
Read More
Index Of News
Total
0
Share